73 research outputs found

    El cultivo de ajipa. Una posible alternativa para la producción de hidratos de carbono, proteína y aceite en un sistema de agricultura sostenible

    Get PDF
    28 páginas, 6 figuras, 2 tablas, 14 referencias. Colección: Agricultura. Serie: Cultivos industriales.Puede descargarse online en https://www.juntadeandalucia.es/servicios/publicaciones/detalle/49368.htmlLa ajipa, cuyo nombre científico es Pachyrhizus ahipa (Wedd.) Parodi, es una planta de la familia Leguminosas ya cultivada por los Incas durante el período precolombino, junto con especies muy habituales y mucho más conocidas para nosotros, como el maíz y el pimiento. De la importancia de la ajipa durante el período Inca dan cuenta los hallazgos arqueológicos de restos de raíces en enterramientos humanos (Paracas-Necrópolis), y las representaciones en cerámica y bordados de distintas culturas (Mochica, Nasca).Los trabajos realizados fueron financiados mayoritariamente con fondos del proyecto de la Unión Europea AHIPA (FAIR6 CT98-4297)Peer reviewe

    Efecto de la fuente de nitrógeno en la distribución de asimilados y composición de savia en ajipa (Pachyrhizus ahipa (Wedd.) Parodi)

    Get PDF
    7 páginas, 4 figuras, 1 tabla y 17 referencias. Trabajo presentado en el VI Simposium Nacional - II Ibérico sobre nutrición mineral de las plantas, Sevilla, del 12 al 15 de Noviembre de 1996. Entidades colaboradoras Junta de Andalucía, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sociedad Española de Fisiología Vegetal, El Monte, Caja de Huelva y Sevilla y Gat Fertiliquidos. Editores Científicos: Rafael Sarmiento Solís, Eduardo O. Leidi Montes y Antonio Troncoso de Arce. (Instituto de Recursos Naturales y Agrobiología de Sevilla).[EN]:Ahipa (Pachyrhizus ahipa (Wedd.) Parodi) is a legume root crop of Andean origin which accumulates carbohydrates of industrial interest in its tuberous roots and rotenone in leaves and seeds. The aim of this work was the study of lhe effect of N source (nitrate vs symbiotic N2, fixation) on growth, assimilate partitioning and xylem sap composition. The treatments consisted in: (a) plants inoculated with an specific Rhizobium strain irrigated wilh a N free nutrient solution (T-N2); and (b) non inoculated plants irrigated with a nutrient solution contai ning 4 mM NO3K (T-NO3). Main differences in growth and assimilate allocation were observed between plants grown in different treatments: N2,-fixing plants showed an increased earliness and reduced tuberous root growth in comparison with NO3-fed plants . Dry matter allocation into leaves and shoots was higher in NO -fed plants lhan in N2-fixing plants. Nitrogen concentration in leaves, stems and roots was higher in N2-fixing plants than in NO3-fed plants. At early growth stages, main xylem sap nitrogenous solutes were amino acids and amides. At flowering, N2-fixing plants showed high concentratÍon ofureides (allantoin+allantoic acid) and the amino acid L-canavanine[ES]:La ajipa (PachyrhiZlls ahipa (Wedd) Parodi), leguminosa de origen andino, se caracteriza por la acumulación de hidratos de carbono de interés industrial en sus raíces tuberosas y la presencia de rotenona en hojas y semillas. En este trabajo hemos estudiado el efecto de la nutrición nitrogenada (fijación simbiótica de N2 ó N mineral) sobre el crecimiento, partición de asimilados y composición de savia de xilema. Los tratamientos consistieron en: (a) plantas inoculadas con una cepa especifica de Rhizobium spp. (T-N2) y (b) plantas no inoculadas (T-NO3). Las planta se cultivaron en perlita/vermiculit y se regaron con solución de Hewitt sin N (T-N2) o 4 mM NO3K (T-NO3). Se observaron importantes diferencias debidas a la fuente de N: las plantas T-N, presentaron una mayor precocidad en la floración y fructificación y un menor desarrollo de la raíz tuberosa en comparación con las plantas T-NO2. La acumulación de materia seca en hojas y tallos de las plantas también fue superior en las plantas T-NO3. La concentración de N en hojas, tallos y raices fue superior en la plantas T-N2. En estadios tempranos de crecimiento, los componentes principales de savia de xilema, en ambos tratamientos. eran aminoácidos y amidas. En floración, las plantas T-N2, presentaban altas concentraciones de ureidos (alantoina+ácido alantoico) y el principal aminoácido transportado era L-canavanina.Sección de Nutrición Mineral de la Sociedad Española de Fisiología Vegetal y Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC.Peer reviewe

    Role of SOS1 in potassium nutrition

    Get PDF
    Comunicación oral presentada al FESPB celebrado del 4-9 de julio, 2010, en Valencia, España.Peer reviewe

    Active proton efflux, nutrient retention and boron-bridging of pectin are related to greater tolerance of proton toxicity in the roots of two <i>Erica </i>species

    Get PDF
    36 páginas.-- 6 figuras.-- 2 tablas.-- 50 referencias.-- Appendix A. The supplementary data related to this article is https://doi.org/10.1016/j.plaphy.2018.02.029Background and aims: Tolerance to soil acidity was studied in two species of Ericaceae that grow in mine-contaminated soils (S Portugal, SW Spain) to find out if there are interspecific variations in H+ tolerance which might be related to their particular location. Methods: Tolerance to H+ toxicity was tested in nutrient solutions using seeds collected in SW Spain. Plant growth and nutrient contents in leaves, stems and roots were determined. Viability tests and proton exchange were studied in roots exposed, short-term, to acidic conditions. Membrane ATPase activity and the cell-wall pectic polysaccharide domain rhamnogalacturonan-II (RG-II) were analysed to find out interspecific differences. Results: Variation in survival, growth and mineral composition was found between species. The H+-tolerant species (Erica andevalensis) showed greater concentration of nutrients than E. australis. Very low pH (pH 2) produced a significant loss of root nutrients (K, P, Mg) in the sensitive species. Root ATPase activity was slightly higher in the tolerant species with a correspondingly greater H+ efflux capacity. In both species, the great majority of the RG-II domains were in their boron-bridged dimeric form. However, shifting to a medium of pH 2 caused some of the boron bridges to break in the sensitive species. Conclusions: Variation in elements linked to the cell wall-membrane complex and the stability of their components (RG-II, H+-ATPases) are crucial for acid stress tolerance. Thus, by maintaining root cell structure, active proton efflux avoided toxic H+ build-up in the cytoplasm and supported greater nutrient acquisition in H+-tolerant species.This work was partially granted by MICINN contract CGL2006/02860 and by Fundación Areces. SCF thanks the BBSRC (UK; grant reference BB/H000690/1) and DS thanks the Comisión Nacional de Investigación Científica y Tecnológia (Conicyt; Chile) for financial support.Peer reviewe

    Leaf gas exchange of Pachyrhizus ahipa and P. erosus under water and temperature stress

    No full text
    Gas exchange, water relations, and leaf traits were studied in the tuberous-root producing legumes ahipa (Pachyrhizus ahipa) and yambean (P. erosus) under different environmental conditions. Differences in leaf traits (hairiness, leaf area, areal leaf mass, stomatal density) and paraheliotropism were found between ahipa and yambean. Under sufficient water supply, the increase in air temperature and decrease in air humidity increased stomatal conductance (gs) and net photosynthetic rate (PN) in yambean but reduced them in ahipa. In a drying soil (14 d after irrigation), inter-specific variation in gas exchange was only observed in the early morning, and yambean showed a greater sensitivity to water restriction than ahipa. High gs at low humidity increased PN of P. erosus but resulted in lower water-use efficiency (WUE). However, long-term WUE, estimated by leaf carbon isotope discrimination, showed little variation between species. Daily-irrigated ahipa and yambean grown in the greenhouse did not show significant differences in gas exchange. However, leaf temperature was significantly greater in yambean than in ahipa while a steepper relationship between E and PN and gs was observed in ahipa.Peer Reviewe

    How do vacuolar NHX exchangers function in plant salt tolerance?

    Get PDF
    4 pages, 1 figure, 35 references.Potassium (K+) is a major osmoticum of plant cells, and the vacuolar accumulation of this element is an especially crucial feature for plants under high-salt conditions. Emerging evidence indicates that cation/proton transporters of the NHX family are instrumental in the H+-linked K+ transport that mediate active K+ uptake at the tonoplast for the unequal partitioning of K+ between vacuole and cytosol. However, and in spite of tenuous supporting evidence, NHX proteins are widely regarded as key players in the sequestration of sodium (Na+) into vacuoles to avert ion toxicity in the cytosol of plants under salinity stress. Here, we propose an updated model positing that NHX proteins fulfill a protective function to minimize salt-related stress mainly through the vacuolar compartmentalization of K+ and, in some cases, of Na+ as well thereby preventing toxic Na+-K+ ratios in the cytosol while accruing solutes for osmotic balance.This work was supported by the Spanish Ministry of Science and Technology grants BIO2009-08641 and CSD2007-00057 to J.M.P. X.J. was supported by a JAE-Doc grant from C.S.I.C.Peer reviewe

    Tolerancia de los cultivos al estrés salino : qué hay de nuevo

    Get PDF
    La salinidad es un problema grave en muchas zonas áridas, donde el riego ha ido aumentado paulatinamente la concentración de sales solubles en el suelo y reduciendo el potencial productivo de muchos cultivos. La salinidad puede inhibir la germinación y el crecimiento de las plantas, reduciendo el rendimiento o la calidad del producto. Esta revisión resume parte el conocimiento acumulado durante varias décadas sobre los principales efectos de la salinidad en los cultivos y los últimos avances en el estudio de los mecanismos de tolerancia, que han dado lugar a nuevas alternativas para reducir el impacto negativo de la salinidad en la producción agraria.Salinity is a major problem in arid areas of the world where irrigation has been increasing soluble salt concentration in the soils and reducing crop productivity. Salinity inhibits seed germination, reduces plant growth limiting crop yield, and affects crop quality. This article summarizes the research carried out on physiology of crops under salt stress and the latest advances in the study of basic mechanisms of adaptation and their biotechnological applications for reducing the negative impact of salinity in crop productivity

    Bases moleculares de la resistencia a estreses abióticos

    No full text
    32 páginas. El libro consta de 493 páginas.Este trabajo se ha realizado con el apoyo del Ministerio de Ciencia e Innovación (BFU2006-06968) y de la Junta de Andalucía (BIO-148).Peer Reviewe

    Crop tolerance to salinity: what is new?

    No full text
    22 páginas, 1 figura, 2 tablas, 111 referencias.[ES]: La salinidad es un problema grave en muchas zonas áridas, donde el riego ha ido au- mentado paulatinamente la concentración de sales solubles en el suelo y reduciendo el potencial productivo de muchos cultivos. La salinidad puede inhibir la germinación y el crecimiento de las plantas, reduciendo el rendimiento o la calidad del producto. Esta revisión resume parte el conocimiento acumulado durante varias décadas sobre los prin- cipales efectos de la salinidad en los cultivos y los últimos avances en el estudio de los mecanismos de tolerancia, que han dado lugar a nuevas alternativas para reducir el impacto negativo de la salinidad en la producción agraria.[EN]: Salinity is a major problem in arid areas of the world where irrigation has been increasing soluble salt concentration in the soils and reducing crop productivity. Salinity inhibits seed germination, reduces plant growth limiting crop yield, and affects crop quality. This article summarizes the research carried out on physiology of crops under salt stress and the latest advances in the study of basic mechanisms of adaptation and their biotechnological applications for reducing the negative impact of salinity in crop productivity.Peer reviewe
    corecore